CS 170 Efficient Algorithms and Intractable Problems
Spring 2016 Alessandro Chiesa and Umesh Vazirani Final Project

Andrew Wong, Derrick Mar, Nader Azari, Lucine Oganesian

We designed a greedy depth-first search algorithm. Our greedy algorithm was designed to have a variable
“branching factor,” which corresponded to the number of children that would be considered; ’branching
factor’ number of randomly selected children were chosen to be explored from each vertex. After depth-first
search found a cycle, we would store that cycle and remove all vertices that were a part of that cycle, thus
minimizing the number of vertices to be searched over in future iterations. Further optimizations included
running multiple iterations of greedy to find a better solution when the instance finished under a given time
limit.

However, greedy did not always perform well, so we devised an alternate solution. In the alternate solution,
breadth-first search was used to find as many cycles of length 5 or less. To expedite the process, only 25% of
the children of each vertex were randomly selected to be explored. After finding as many cycles as possible,
the problem reduced to a set packing problem (see source 1), wherein we needed to figure out which sets
to select to maximize our reward (i.e, the penalty we would otherwise receive if we didn’t select a cycle),
while also making sure that no element (vertex) was selected more than once. We formulated the problem
as a relaxed integer linear program (see source 1):

n
max Z CiXi
=
0<x<1, Yyx>0 )Y x<1WweG
i:veS;

where x; is 1 if cycle §; is selected, O otherwise and v is a vertex in the given graph G. We used PuLP (see
source 2), a python library for solving linear program, to solve our linear program. We had to limit the
number of sets (i.e. cycles) considered to be at most 6000 (for computation time). These were randomly
selected from all the cycles found by BFS.
For each instance we selected either the output of greedy or the output of the linear program, depending on
which maximized our reward the most. The linear program failed to yield a timely answer on one of the
instances (238), for which we took greedy’s solution.

SOUI‘CGS

1. Set packing https://en.wikipedia.org/wiki/Set_packing#Integer_linear_program_formulation

2. PuLP documentation http://pythonhosted.org/PuLP/CaseStudies/a_set_partitioning_problem.html

CS 170, Spring 2016, Final Project

—_



